Title Generalized skew bisubmodularity: A characterization and a min‒max theorem
نویسندگان
چکیده
Huber, Krokhin, and Powell (2013) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain. In this paper we consider a natural generalization of the concept of skew bisubmodularity and show a connection between the generalized skew bisubmodularity and a convex extension over rectangles. We also analyze the dual polyhedra, called skew bisubmodular polyhedra, associated with generalized skew bisubmodular functions and derive a min-max theorem that characterizes the minimum value of a generalized skew bisubmodular function in terms of a minimum-norm point in the associated skew bisubmodular polyhedron.
منابع مشابه
Generalized skew bisubmodularity: A characterization and a min-max theorem
Huber, Krokhin, and Powell (Proc. SODA2013) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain. In this paper we consider a natural generalization of the concept of skew bisubmodularity and show a connection between the generalized skew bisubmodularity...
متن کاملPolynomial Combinatorial Algorithms for Skew-bisubmodular Function Minimization
Huber, Krokhin, and Powell (2013) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain, and Huber and Krokhin (2014) showed the oracle tractability of minimization of skew-bisubmodular functions. Fujishige, Tanigawa, and Yoshida (2014) also showed a min-...
متن کاملSkew Bisubmodularity and Valued CSPs
An instance of the (finite-)Valued Constraint Satisfaction Problem (VCSP) is given by a finite set of variables, a finite domain of values, and a sum of (rational-valued) functions, each function depending on a subset of the variables. The goal is to find an assignment of values to the variables that minimises the sum. We study (assuming that PTIME , NP) how the complexity of this very general ...
متن کاملMyhill-Nerode Fuzzy Congruences Corresponding to a General Fuzzy Automata
Myhill-Nerode Theorem is regarded as a basic theorem in the theories of languages and automata and is used to prove the equivalence between automata and their languages. The significance of this theorem has stimulated researchers to develop that on different automata thus leading to optimizing computational models. In this article, we aim at developing the concept of congruence in general fuzzy...
متن کاملA Flexible Skew-Generalized Normal Distribution
In this paper, we consider a flexible skew-generalized normal distribution. This distribution is denoted by $FSGN(/lambda _1, /lambda _2 /theta)$. It contains the normal, skew-normal (Azzalini, 1985), skew generalized normal (Arellano-Valle et al., 2004) and skew flexible-normal (Gomez et al., 2011) distributions as special cases. Some important properties of this distribution are establi...
متن کامل